Jumat, 30 Maret 2018

Sponsored Links

Large Detailed Infographic Element Ytterbium Stock Vector ...
src: thumb9.shutterstock.com

Naturally occurring Ytterbium (70Yb) is composed of 7 stable isotopes, 168Yb, 170Yb, 171Yb, 172Yb, 173Yb, 174Yb, and 176Yb, with 174Yb being the most abundant (31.83% natural abundance). Twenty-seven radioisotopes have been characterized, with the most stable being 169Yb with a half-life of 32.026 days, 175Yb with a half-life of 4.185 days, and 166Yb with a half-life of 56.7 hours. All of the remaining radioactive isotopes have half-lives that are less than 2 hours, and the majority of these have half-lives that are less than 20 minutes. This element also has 12 meta states, with the most stable being 169mYb (t1/2 46 seconds).

The isotopes of ytterbium range in atomic weight from 147.967 u (148Yb) to 180.9562 u (181Yb). The primary decay mode before the most abundant stable isotope, 174Yb is electron capture, and the primary mode after is beta emission. The primary decay products before 174Yb are isotopes of thulium, and the primary products after are isotopes of lutetium. Of interest to modern quantum optics, the different ytterbium isotopes follow either Bose-Einstein statistics or Fermi-Dirac statistics, leading to interesting behavior in optical lattices.



Video Isotopes of ytterbium



List of isotopes

Notes

  • Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.

Maps Isotopes of ytterbium



References

  • Isotope masses from:
    • G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3-128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23. 
  • Isotopic compositions and standard atomic masses from:
    • J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683-800. doi:10.1351/pac200375060683. 
    • M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051-2066. doi:10.1351/pac200678112051. Lay summary. 
  • Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
    • G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillonn (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3-128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23. 
    • National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved 23 February 2017. 
    • N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide. CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9. 


Source of the article : Wikipedia

Comments
0 Comments